Apolipoprotein E4 Elicits Lysosomal Cathepsin D Release, Decreased Thioredoxin-1 Levels, and Apoptosis

The major genetic risk factor for Alzheimer’s disease (AD), apolipoprotein E4 (ApoE4), has been suggested to have detrimental effects on neurons, including direct toxicity via apoptosis. Thioredoxin-1 (Trx1) is an endogenous antioxidant protein important for redox regulation and participates in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Alzheimer's disease 2017-01, Vol.56 (2), p.601-617
Hauptverfasser: Persson, Torbjörn, Lattanzio, Francesca, Calvo-Garrido, Javier, Rimondini, Roberto, Rubio-Rodrigo, Marta, Sundström, Erik, Maioli, Silvia, Sandebring-Matton, Anna, Cedazo-Mínguez, Ángel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The major genetic risk factor for Alzheimer’s disease (AD), apolipoprotein E4 (ApoE4), has been suggested to have detrimental effects on neurons, including direct toxicity via apoptosis. Thioredoxin-1 (Trx1) is an endogenous antioxidant protein important for redox regulation and participates in the regulation of apoptosis through the inhibition of apoptosis signal-regulating kinase-1 (Ask-1). In this study, we have investigated the effects of ApoE on Trx1 in the brain. Our results showed that the protein levels of Trx1 were reduced in the hippocampus of ApoE4 targeted replacement (TR) mice compared to ApoE3 TR mice. The reduction was also seen in vitro after treatment of both human primary cortical neurons and neuroblastoma cells with human recombinant ApoE4 (rApoE4). Furthermore, ApoE4 caused a disruption of lysosomal integrity and a shift in the localization of Cathepsin D, an enzyme known to degrade Trx1. ApoE4 treatment induced in addition apoptosis through translocation of Death-domain associated protein-6 (Daxx) from the nucleus to the cytosol, suggesting an activation of the Ask-1 pathway. This toxicity was prevented by overexpression of Trx1 and other endogenous Ask-1 inhibitors. Our data suggests that down-regulation of Trx1 is involved in the toxicity caused by ApoE4. An activated ASK-1 pathway might indeed make cells more vulnerable to other insults such as amyloid-β, which could partially explain the mechanism behind the strongest genetic risk factor for AD.
ISSN:1387-2877
1875-8908
1875-8908
DOI:10.3233/JAD-150738