Membrane-Depolarizing Channel Blockers Induce Selective Glioma Cell Death by Impairing Nutrient Transport and Unfolded Protein/Amino Acid Responses

Glioma-initiating cells (GIC) are considered the underlying cause of recurrences of aggressive glioblastomas, replenishing the tumor population and undermining the efficacy of conventional chemotherapy. Here we report the discovery that inhibiting T-type voltage-gated Ca and K channels can effective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2017-04, Vol.77 (7), p.1741-1752
Hauptverfasser: Niklasson, Mia, Maddalo, Gianluca, Sramkova, Zuzana, Mutlu, Ercan, Wee, Shimei, Sekyrova, Petra, Schmidt, Linnéa, Fritz, Nicolas, Dehnisch, Ivar, Kyriatzis, Gregorios, Krafcikova, Michaela, Carson, Brittany B, Feenstra, Jennifer M, Marinescu, Voichita D, Segerman, Anna, Haraldsson, Martin, Gustavsson, Anna-Lena, Hammarström, Lars G J, Jenmalm Jensen, Annika, Uhrbom, Lene, Altelaar, A F Maarten, Linnarsson, Sten, Uhlén, Per, Trantirek, Lukas, Vincent, C Theresa, Nelander, Sven, Enger, Per Øyvind, Andäng, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glioma-initiating cells (GIC) are considered the underlying cause of recurrences of aggressive glioblastomas, replenishing the tumor population and undermining the efficacy of conventional chemotherapy. Here we report the discovery that inhibiting T-type voltage-gated Ca and K channels can effectively induce selective cell death of GIC and increase host survival in an orthotopic mouse model of human glioma. At present, the precise cellular pathways affected by the drugs affecting these channels are unknown. However, using cell-based assays and integrated proteomics, phosphoproteomics, and transcriptomics analyses, we identified the downstream signaling events these drugs affect. Changes in plasma membrane depolarization and elevated intracellular Na , which compromised Na -dependent nutrient transport, were documented. Deficits in nutrient deficit acted in turn to trigger the unfolded protein response and the amino acid response, leading ultimately to nutrient starvation and GIC cell death. Our results suggest new therapeutic targets to attack aggressive gliomas. .
ISSN:0008-5472
1538-7445
1538-7445
DOI:10.1158/0008-5472.CAN-16-2274