Allele-specific quantitative proteomics unravels molecular mechanisms modulated by cis-regulatory PPARG locus variation

Genome-wide association studies identified numerous disease risk loci. Delineating molecular mechanisms influenced by cis-regulatory variants is essential to understand gene regulation and ultimately disease pathophysiology. Combining bioinformatics and public domain chromatin information with quant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2017-04, Vol.45 (6), p.3266-3279
Hauptverfasser: Lee, Heekyoung, Qian, Kun, von Toerne, Christine, Hoerburger, Lena, Claussnitzer, Melina, Hoffmann, Christoph, Glunk, Viktoria, Wahl, Simone, Breier, Michaela, Eck, Franziska, Jafari, Leili, Molnos, Sophie, Grallert, Harald, Dahlman, Ingrid, Arner, Peter, Brunner, Cornelia, Hauner, Hans, Hauck, Stefanie M, Laumen, Helmut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genome-wide association studies identified numerous disease risk loci. Delineating molecular mechanisms influenced by cis-regulatory variants is essential to understand gene regulation and ultimately disease pathophysiology. Combining bioinformatics and public domain chromatin information with quantitative proteomics supports prediction of cis-regulatory variants and enabled identification of allele-dependent binding of both, transcription factors and coregulators at the type 2 diabetes associated PPARG locus. We found rs7647481A nonrisk allele binding of Yin Yang 1 (YY1), confirmed by allele-specific chromatin immunoprecipitation in primary adipocytes. Quantitative proteomics also found the coregulator RING1 and YY1 binding protein (RYBP) whose mRNA levels correlate with improved insulin sensitivity in primary adipose cells carrying the rs7647481A nonrisk allele. Our findings support a concept with diverse cis-regulatory variants contributing to disease pathophysiology at one locus. Proteome-wide identification of both, transcription factors and coregulators, can profoundly improve understanding of mechanisms underlying genetic associations.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkx105