Detecting ligand interactions in real time on living bacterial cells

Time-resolved analysis assays of receptor-ligand interactions are fundamental in basic research and drug discovery. Adequate methods are well developed for the analysis of recombinant proteins such as antibody-antigen interactions. However, assays for time-resolved ligand-binding processes on living...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2018-05, Vol.102 (9), p.4193-4201
Hauptverfasser: Encarnação, João Crispim, Schulte, Tim, Achour, Adnane, Björkelund, Hanna, Andersson, Karl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Time-resolved analysis assays of receptor-ligand interactions are fundamental in basic research and drug discovery. Adequate methods are well developed for the analysis of recombinant proteins such as antibody-antigen interactions. However, assays for time-resolved ligand-binding processes on living cells are still rare, in particular within microbiology. In this report, the real-time cell-binding assay (RT-CBA) technology LigandTracer®, originally designed for mammalian cell culture, was extended to cover Gram-positive and Gram-negative bacteria. This required the development of new immobilization methods for bacteria, since LigandTracer depends on cells being firmly attached to a Petri dish. The evaluated Escherichia coli CJ236 and BL21 as well as Staphylococcus carnosus TM300 strains were immobilized to plastic Petri dishes using antibody capture, allowing us to depict kinetic binding traces of fluorescently labeled antibodies directed against surface-displayed bacterial proteins for as long as 10–15 h. Interaction parameters, such as the affinity and kinetic constants, could be estimated with high precision (coefficient of variation 9–44%) and the bacteria stayed viable for at least 16 h. The other tested attachment protocols were inferior to the antibody capture approach. Our attachment protocol is generic and could potentially also be applied to other assays and purposes.
ISSN:0175-7598
1432-0614
1432-0614
DOI:10.1007/s00253-018-8919-3