Identification of potential carcinogenic and chemopreventive effects of prescription drugs: a protocol for a Norwegian registry-based study
IntroductionSurveillance of unintended effects of pharmaceuticals (pharmacovigilance or drug safety) is crucial, as knowledge of rare or late side effects is limited at the time of the introduction of new medications into the market. Side effects of drugs may involve increased or decreased risk of c...
Gespeichert in:
Veröffentlicht in: | BMJ open 2019-04, Vol.9 (4), p.e028504-e028504 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | IntroductionSurveillance of unintended effects of pharmaceuticals (pharmacovigilance or drug safety) is crucial, as knowledge of rare or late side effects is limited at the time of the introduction of new medications into the market. Side effects of drugs may involve increased or decreased risk of cancer, but these typically appear after a long induction period. This fact, together with low incidences of many cancer types, limits the usefulness of traditional pharmacovigilance strategies, primarily based on spontaneous reporting of adverse events, to identify associations between drug use and cancer risk. Postmarketing observational pharmacoepidemiological studies are therefore crucial in the evaluation of drug-cancer associations.Methods and analysisThe main data sources in this project will be the Norwegian Prescription Database and the Cancer Registry of Norway. The underlying statistical model will be based on a multiple nested case–control design including all adult (~200 000) incident cancer cases within the age-range 18–85 years from 2007 through 2015 in Norway as cases. 10 cancer-free population controls will be individually matched to these cases with respect to birth year, sex and index date (date of cancer diagnosis). Drug exposure will be modelled as chronic user/non-user by counting prescriptions, and cumulative use by summarising all dispensions’ daily defined doses over time. Conditional logistic regression models adjusted for comorbidity (National Patient Register), socioeconomic parameters (Statistics Norway), concomitant drug use and, for female cancers, reproduction data (Medical Birth Registry), will be applied to identify drug-use–cancer-risk associations.Ethics and disseminationThe study is approved by the regional ethical committee and the Norwegian data protection authority. Results of the initial screening step and analysis pipeline will be described in a key paper. Subsequent papers will report the evaluation of identified signals in replication studies. Results will be published in peer-reviewed journals, at scientific conferences and through press releases. |
---|---|
ISSN: | 2044-6055 2044-6055 |
DOI: | 10.1136/bmjopen-2018-028504 |