Genetically-predicted life-long lowering of low-density lipoprotein cholesterol is associated with decreased frailty: A Mendelian randomization study in UK biobank

High circulating low-density lipoprotein cholesterol (LDL-C) is a major risk factor for atherosclerosis and age-associated cardiovascular events. Long-term dyslipidaemia could contribute to the development of frailty in older individuals through its role in determining cardiovascular health and pote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EBioMedicine 2019-07, Vol.45, p.487-494
Hauptverfasser: Wang, Qi, Wang, Yunzhang, Lehto, Kelli, Pedersen, Nancy L., Williams, Dylan M., Hägg, Sara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High circulating low-density lipoprotein cholesterol (LDL-C) is a major risk factor for atherosclerosis and age-associated cardiovascular events. Long-term dyslipidaemia could contribute to the development of frailty in older individuals through its role in determining cardiovascular health and potentially other physiological pathways. We conducted Mendelian randomization (MR) analyses using genetic variants to estimate the effects of long-term LDL-C modification on frailty in UK Biobank (n = 378,161). Frailty was derived from health questionnaire and interview responses at baseline when participants were aged 40 to 69 years, and calculated using an accumulation-of-deficits approach, i.e. the frailty index (FI). Several aggregated instrumental variables (IVs) using 50 and 274 genetic variants were constructed from independent single-nucleotide polymorphisms (SNPs) to instrument circulating LDL-C concentrations. Specific sets of variants in or near genes that encode six lipid-lowering drug targets (HMGCR, PCSK9, NPC1L1, APOB, APOC3, and LDLR) were used to index effects of exposure to related drug classes on frailty. SNP-LDL-C effects were available from previously published studies. SNP-FI effects were obtained using adjusted linear regression models. Two-sample MR analyses were performed with the IVs as instruments using inverse-variance weighted, MR-Egger, weighted median, and weighted mode methods. To address the stability of the findings, MR analyses were also performed using i) a modified FI excluding the cardiometabolic deficit items and ii) data from comparatively older individuals (aged ≥60 years) only. Several sensitivity analyses were also conducted. On average 0.14% to 0.23% and 0.16% to 0.31% decrements in frailty were observed per standard deviation reduction in LDL-C exposure, instrumented by the general IVs consisting of 50 and 274 variants, respectively. Consistent, though less precise, associations were observed in the HMGCR-, APOC3-, NPC1L1-, and LDLR-specific IV analyses. In contrast, results for PCSK9 were in the same direction but more modest, and null for APOB. All sensitivity analyses produced similar findings. A genetically-predicted life-long lowering of LDL-C is associated with decreased frailty in midlife and older age, representing supportive evidence for LDL-C's role in multiple health- and age-related pathways. The use of lipid-lowering therapeutics with varying mechanisms of action may differ by the extent to which they provid
ISSN:2352-3964
2352-3964
DOI:10.1016/j.ebiom.2019.07.007