Differential Treatments Based on Drug-induced Gene Expression Signatures and Longitudinal Systemic Lupus Erythematosus Stratification

Systemic lupus erythematosus (SLE) is a heterogeneous disease with unpredictable patterns of activity. Patients with similar activity levels may have different prognosis and molecular abnormalities. In this study, we aimed to measure the main differences in drug-induced gene expression signatures ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2019-10, Vol.9 (1), p.15502, Article 15502
Hauptverfasser: Toro-Domínguez, Daniel, Lopez-Domínguez, Raúl, García Moreno, Adrián, Villatoro-García, Juan A., Martorell-Marugán, Jordi, Goldman, Daniel, Petri, Michelle, Wojdyla, Daniel, Pons-Estel, Bernardo A., Isenberg, David, Morales-Montes de Oca, Gabriela, Trejo-Zambrano, María Isabel, García González, Benjamín, Rosetti, Florencia, Gómez-Martín, Diana, Romero-Díaz, Juanita, Carmona-Sáez, Pedro, Alarcón-Riquelme, Marta E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Systemic lupus erythematosus (SLE) is a heterogeneous disease with unpredictable patterns of activity. Patients with similar activity levels may have different prognosis and molecular abnormalities. In this study, we aimed to measure the main differences in drug-induced gene expression signatures across SLE patients and to evaluate the potential for clinical data to build a machine learning classifier able to predict the SLE subset for individual patients. SLE transcriptomic data from two cohorts were compared with drug-induced gene signatures from the CLUE database to compute a connectivity score that reflects the capability of a drug to revert the patient signatures. Patient stratification based on drug connectivity scores revealed robust clusters of SLE patients identical to the clusters previously obtained through longitudinal gene expression data, implying that differential treatment depends on the cluster to which patients belongs. The best drug candidates found, mTOR inhibitors or those reducing oxidative stress, showed stronger cluster specificity. We report that drug patterns for reverting disease gene expression follow the cell-specificity of the disease clusters. We used 2 cohorts to train and test a logistic regression model that we employed to classify patients from 3 independent cohorts into the SLE subsets and provide a clinically useful model to predict subset assignment and drug efficacy.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-51616-9