Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury

We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury. We performed logistic regression (LR), lasso regression, and ridge regression with key baseline predictors in the IMPACT-II database (15 studies, n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical epidemiology 2020-06, Vol.122 (2), p.95-107
Hauptverfasser: Gravesteijn, Benjamin Y., Lingsma, Hester F., Nelson, David, Steyerberg, Ewout W., Andreassen, Lasse, Anke, Audny, Audibert, Gérard, Barzó, Pál, Beauvais, Romuald, Bellander, Bo-Michael, Benali, Habib, Beretta, Luigi, Blaabjerg, Morten, Brazinova, Alexandra, Brooker, Joanne, Brorsson, Camilla, Bullinger, Monika, Lozano, Guillermo Carbayo, Chieregato, Arturo, Coburn, Mark, Dawes, Helen, Della Corte, Francesco, Đilvesi, Đula, Esser, Patrick, Martin Fabricius, Erzsébet Ezer, Feigin, Kelly Foks, Valery L., Gagliardo, Pablo, Gantner, Dashiell, Gao, Guoyi, Glocker, Ben, Gravesteijn, Benjamin, Grossi, Francesca, Gruen, Russell L., Helbok, Raimund, Jacobs, Bram, Ji-yao Jiang, Mike Jarrett, Karan, Mladen, Kolias, Angelos G., Kompanje, Erwin, Koraropoulos, Evgenios, Koskinen, Lars-Owe, Laureys, Steven, Legrand, Valerie, Lightfoot, Roger, Lingsma, Hester, Castaño-León, Ana M., Manley, Geoffrey, Maréchal, Hugues, McMahon, Catherine, Menovsky, Tomas, Mulazzi, Davide, Nair, Nandesh, Nieboer, Daan, Nyirádi, József, Oresic, Matej, Ortolano, Fabrizio, Palotie, Aarno, Parizel, Paul M., Pirinen, Matti, Polinder, Suzanne, Posti, Jussi P., Puybasset, Louis, Radoi, Andreea, Rhodes, Jonathan, Richardson, Sylvia, Richter, Sophie, Ripatti, Samuli, Rocka, Saulius, Roe, Cecilie, Rosenlund, Christina, Rossaint, Rolf, Sakowitz, Oliver, Sandor, Janos, Schoechl, Herbert, Schou, Rico Frederik, Schwendenwein, Elisabeth, Sewalt, Charlie, Stamatakis, Emmanuel, Stanworth, Simon, Ao, Braden Te, Tenovuo, Olli, Theadom, Alice, Tibboel, Dick, Vajkoczy, Peter, Vallance, Shirley, van der Naalt, Joukje, van Dijck, Jeroen T.J.M., van Essen, Thomas A., van Heugten, Caroline, Van Praag, Dominique, Vyvere, Thijs Vande, Vespa, Paul M., Voormolen, Daphne, Wang, Kevin K.W., Wiegers, Eveline, Winzeck, Stefan, Wolf, Stefan, Yang, Zhihui, Younsi, Alexander, Zelinkova, Veronika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury. We performed logistic regression (LR), lasso regression, and ridge regression with key baseline predictors in the IMPACT-II database (15 studies, n = 11,022). ML algorithms included support vector machines, random forests, gradient boosting machines, and artificial neural networks and were trained using the same predictors. To assess generalizability of predictions, we performed internal, internal-external, and external validation on the recent CENTER-TBI study (patients with Glasgow Coma Scale
ISSN:0895-4356
1878-5921
1878-5921
DOI:10.1016/j.jclinepi.2020.03.005