Self-Reporting and Photothermally Enhanced Rapid Bacterial Killing on a Laser-Induced Graphene Mask
Wearing face masks has been widely recommended to contain respiratory virus diseases, yet the improper use of masks poses a threat of jeopardizing the protection effect. We here identified the bacteria viability on common face masks and found that the majority of bacteria (90%) remain alive after 8...
Gespeichert in:
Veröffentlicht in: | ACS nano 2020-09, Vol.14 (9), p.12045-12053 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wearing face masks has been widely recommended to contain respiratory virus diseases, yet the improper use of masks poses a threat of jeopardizing the protection effect. We here identified the bacteria viability on common face masks and found that the majority of bacteria (90%) remain alive after 8 h. Using laser-induced graphene (LIG), the inhibition rate improves to ∼81%. Combined with the photothermal effect, 99.998% bacterial killing efficiency could be attained within 10 min. For aerosolized bacteria, LIG also showed superior antibacterial capacity. The LIG can be converted from a diversity of carbon precursors including biomaterials, which eases the supply stress and environmental pressure amid an outbreak. In addition, self-reporting of mask conditions is feasible using the moisture-induced electricity from gradient graphene. Our results improve the safe use of masks and benefit the environment. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.0c05330 |