Self-Reporting and Photothermally Enhanced Rapid Bacterial Killing on a Laser-Induced Graphene Mask

Wearing face masks has been widely recommended to contain respiratory virus diseases, yet the improper use of masks poses a threat of jeopardizing the protection effect. We here identified the bacteria viability on common face masks and found that the majority of bacteria (90%) remain alive after 8...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-09, Vol.14 (9), p.12045-12053
Hauptverfasser: Huang, Libei, Xu, Siyu, Wang, Zhaoyu, Xue, Ke, Su, Jianjun, Song, Yun, Chen, Sijie, Zhu, Chunlei, Tang, Ben Zhong, Ye, Ruquan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wearing face masks has been widely recommended to contain respiratory virus diseases, yet the improper use of masks poses a threat of jeopardizing the protection effect. We here identified the bacteria viability on common face masks and found that the majority of bacteria (90%) remain alive after 8 h. Using laser-induced graphene (LIG), the inhibition rate improves to ∼81%. Combined with the photothermal effect, 99.998% bacterial killing efficiency could be attained within 10 min. For aerosolized bacteria, LIG also showed superior antibacterial capacity. The LIG can be converted from a diversity of carbon precursors including biomaterials, which eases the supply stress and environmental pressure amid an outbreak. In addition, self-reporting of mask conditions is feasible using the moisture-induced electricity from gradient graphene. Our results improve the safe use of masks and benefit the environment.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.0c05330