Genetic mechanisms of critical illness in COVID-19
Host-mediated lung inflammation is present 1 , and drives mortality 2 , in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development 3 . Here we report the results of the Gen...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2021-03, Vol.591 (7848), p.92-98 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Host-mediated lung inflammation is present
1
, and drives mortality
2
, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development
3
. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079,
P
= 1.65 × 10
−8
) in a gene cluster that encodes antiviral restriction enzyme activators (
OAS1
,
OAS2
and
OAS3
); on chromosome 19p13.2 (rs74956615,
P
= 2.3 × 10
−8
) near the gene that encodes tyrosine kinase 2 (
TYK2
); on chromosome 19p13.3 (rs2109069,
P
= 3.98 × 10
−12
) within the gene that encodes dipeptidyl peptidase 9 (
DPP9
); and on chromosome 21q22.1 (rs2236757,
P
= 4.99 × 10
−8
) in the interferon receptor gene
IFNAR2
. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of
IFNAR2
, or high expression of
TYK2
, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte–macrophage chemotactic receptor
CCR2
is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice.
A genome-wide association study of critically ill patients with COVID-19 identifies genetic signals that relate to important host antiviral defence mechanisms and mediators of inflammatory organ damage that may be targeted by repurposing drug treatments. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/s41586-020-03065-y |