Implementation of iMiDEV™, a new fully automated microfluidic platform for radiopharmaceutical production
iMiDEV™ microfluidic system is a new automated tool for a small-scale production of radiopharmaceuticals. This new radiochemistry module utilizes microfluidic cassettes capable of producing diversified radiopharmaceuticals in liquid phase reactions in an automated synthesizer. The user interface is...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2021, Vol.21 (11), p.2272-2282 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | iMiDEV™ microfluidic system is a new automated tool for a small-scale production of radiopharmaceuticals. This new radiochemistry module utilizes microfluidic cassettes capable of producing diversified radiopharmaceuticals in liquid phase reactions in an automated synthesizer. The user interface is intuitive and designed to give the operator all the information required and to allow driving the synthesis either manually or fully automatically. In this work, we have demonstrated liquid phase reaction and presented the first results of an efficient fully automated [
18
F]NaF radiosynthesis on the iMiDEV™ platform. Different parameters such as a type of cyclotron targets, initial activity, concentration and volume of the fluoride-18 targetry have been investigated in order to elaborate the optimised radiolabelling of the ligand. Single and double sodium [
18
F]fluoride synthesis procedures have been successfully developed using two chambers of the cassette. A single-dose of radiotracer was produced in an average radiochemical yield of 87% (decay corrected) within 8 min and quality control tests were performed as per European Pharmacopoeia.
We present an efficient fully automated sodium [
18
F]fluoride radiosynthesis on a new iMiDEV™ cassette-based microfluidic platform. |
---|---|
ISSN: | 1473-0197 1473-0189 1473-0189 |
DOI: | 10.1039/d1lc00148e |