Plasma markers predict changes in amyloid, tau, atrophy and cognition in non-demented subjects

It is currently unclear whether plasma biomarkers can be used as independent prognostic tools to predict changes associated with early Alzheimer's disease. In this study, we sought to address this question by assessing whether plasma biomarkers can predict changes in amyloid load, tau accumulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BRAIN 2021-10, Vol.144 (9), p.2826-2836
Hauptverfasser: Pereira, Joana B, Janelidze, Shorena, Stomrud, Erik, Palmqvist, Sebastian, van Westen, Danielle, Dage, Jeffrey L, Mattsson-Carlgren, Niklas, Hansson, Oskar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is currently unclear whether plasma biomarkers can be used as independent prognostic tools to predict changes associated with early Alzheimer's disease. In this study, we sought to address this question by assessing whether plasma biomarkers can predict changes in amyloid load, tau accumulation, brain atrophy and cognition in non-demented individuals. To achieve this, plasma amyloid-β 42/40 (Aβ42/40), phosphorylated-tau181, phosphorylated-tau217 and neurofilament light were determined in 159 non-demented individuals, 123 patients with Alzheimer's disease dementia and 35 patients with a non-Alzheimer's dementia from the Swedish BioFINDER-2 study, who underwent longitudinal amyloid (18F-flutemetamol) and tau (18F-RO948) PET, structural MRI (T1-weighted) and cognitive testing. Our univariate linear mixed effect models showed there were several significant associations between the plasma biomarkers with imaging and cognitive measures. However, when all biomarkers were included in the same multivariate linear mixed effect models, we found that increased longitudinal amyloid-PET signals were independently predicted by low baseline plasma Aβ42/40 (P = 0.012), whereas increased tau-PET signals, brain atrophy and worse cognition were independently predicted by high plasma phosphorylated-tau217 (P 
ISSN:0006-8950
1460-2156
DOI:10.1093/brain/awab163