Quality and haptic feedback of three-dimensionally printed models for simulating dental implant surgery
A model offering anatomic replication and haptic feedback similar to that of real bone is essential for hands-on surgical dental implant training. Patient-specific skeletal models can be produced with 3-dimensional (3D) printing, but whether these models can offer optimal haptic feedback for simulat...
Gespeichert in:
Veröffentlicht in: | The Journal of prosthetic dentistry 2024-04, Vol.131 (4), p.660-667 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A model offering anatomic replication and haptic feedback similar to that of real bone is essential for hands-on surgical dental implant training. Patient-specific skeletal models can be produced with 3-dimensional (3D) printing, but whether these models can offer optimal haptic feedback for simulating implant surgery is unknown.
The purpose of this trial was to compare the haptic feedback of different 3D printed models for simulating dental implant surgery.
A cone beam computed tomography image of a 60-year-old man with a partially edentulous mandible was manipulated to segment the mandible and isolated from the rest of the scan. Three-dimensional models were printed with 6 different printers and materials: material jetting-based printer (MJ, acrylic-based resin); digital light processing-based printer (DLP, acrylic-based resin); fused filament fabrication-based printer (FFF1, polycarbonate filament; FFF2, polylactic acid filament); stereolithography-based printer (SLA, acrylic-based resin); and selective laser sintering-based printer (SLS, polyamide filament). Five experienced maxillofacial surgeons performed a simulated implant surgery on the models. A 5-point Likert scale questionnaire was established to assess the haptic feedback. The Friedman test and cumulative logit models were applied to evaluate differences among the models (α=.05).
The median score for drilling perception and implant insertion was highest for the MJ-based model and lowest for the SLS-based model. In relation to the drill chips, a median score of ≥3 was observed for all models. The score for corticotrabecular transition was highest for the MJ-based model and lowest for the FFF2-based model. Overall, the MJ-based model offered the highest score compared with the other models.
The 3D printed model with MJ technology and acrylic-based resin provided the best haptic feedback for performing implant surgery. However, none of the models were able to completely replicate the haptic perception of real bone. |
---|---|
ISSN: | 0022-3913 1097-6841 1097-6841 |
DOI: | 10.1016/j.prosdent.2022.02.027 |