Development and Validation of Prediction Models of Adverse Kidney Outcomes in the Population With and Without Diabetes

To predict adverse kidney outcomes for use in optimizing medical management and clinical trial design. In this meta-analysis of individual participant data, 43 cohorts (N = 1,621,817) from research studies, electronic medical records, and clinical trials with global representation were separated int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes care 2022-09, Vol.45 (9), p.2055-2063
Hauptverfasser: Grams, Morgan E, Brunskill, Nigel J, Ballew, Shoshana H, Sang, Yingying, Coresh, Josef, Matsushita, Kunihiro, Surapaneni, Aditya, Bell, Samira, Carrero, Juan J, Chodick, Gabriel, Evans, Marie, Heerspink, Hiddo J L, Inker, Lesley A, Iseki, Kunitoshi, Kalra, Philip A, Kirchner, H Lester, Lee, Brian J, Levin, Adeera, Major, Rupert W, Medcalf, James, Nadkarni, Girish N, Naimark, David M J, Ricardo, Ana C, Sawhney, Simon, Sood, Manish M, Staplin, Natalie, Stempniewicz, Nikita, Stengel, Benedicte, Sumida, Keiichi, Traynor, Jamie P, van den Brand, Jan, Wen, Chi-Pang, Woodward, Mark, Yang, Jae Won, Wang, Angela Yee-Moon, Tangri, Navdeep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To predict adverse kidney outcomes for use in optimizing medical management and clinical trial design. In this meta-analysis of individual participant data, 43 cohorts (N = 1,621,817) from research studies, electronic medical records, and clinical trials with global representation were separated into development and validation cohorts. Models were developed and validated within strata of diabetes mellitus (presence or absence) and estimated glomerular filtration rate (eGFR; ≥60 or
ISSN:0149-5992
1935-5548
1935-5548
DOI:10.2337/dc22-0698