Machine learning for the early prediction of infants with electrographic seizures in neonatal hypoxic‐ischemic encephalopathy

Objective To assess if early clinical and electroencephalography (EEG) features predict later seizure development in infants with hypoxic‐ischemic encephalopathy (HIE). Methods Clinical and EEG parameters

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Epilepsia (Copenhagen) 2023-02, Vol.64 (2), p.456-468
Hauptverfasser: Pavel, Andreea M., O'Toole, John M., Proietti, Jacopo, Livingstone, Vicki, Mitra, Subhabrata, Marnane, William P., Finder, Mikael, Dempsey, Eugene M., Murray, Deirdre M., Boylan, Geraldine B., Pavlidis, Elena, Kharoshankaya, Liudmila, Mathieson, Sean R., Lightbody, Gordon, O’Leary, Jackie, Murray, Mairead, Conway, Jean, Dwyer, Denis, Temko, Andrey, Kiely, Taragh, Ryan, Anthony C., Rennie, Janet M., Vries, Linda S., Weeke, Lauren C., Toet, Mona C., Harteman, Johanneke C., Blennow, Mats, Edqvist, Ingela, Foran, Adrienne, Pinnamaneni, Raga Mallika, Colby‐Milley, Jessica, Shah, Divyen K., Openshaw‐Lawrence, Nicola, Pressler, Ronit M., Kapellou, Olga, Huffelen, Alexander C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective To assess if early clinical and electroencephalography (EEG) features predict later seizure development in infants with hypoxic‐ischemic encephalopathy (HIE). Methods Clinical and EEG parameters
ISSN:0013-9580
1528-1167
1528-1167
DOI:10.1111/epi.17468