Fluidized Bed Co-gasification of Algae and Wood Pellets: Gas Yields and Bed Agglomeration Analysis
Algae utilization in energy production has gained increasing attention as a result of its characteristics, such as high productivity, rapid growth rate, and flexible cultivation environment. In this paper, three species of algae, including a fresh water macroalgae, Oedogonium sp., a saltwater macroa...
Gespeichert in:
Veröffentlicht in: | Energy & fuels 2016-03, Vol.30 (3), p.1800-1809 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Algae utilization in energy production has gained increasing attention as a result of its characteristics, such as high productivity, rapid growth rate, and flexible cultivation environment. In this paper, three species of algae, including a fresh water macroalgae, Oedogonium sp., a saltwater macroalgae, Derbersia tenuissima, and a microalgae species, Scenedesmus sp., were studied to explore the potential of using smaller amounts of algae fuels in blends with traditional woody biomasses in the gasification processes. Co-gasification of 10 wt % algae and 90 wt % Swedish wood pellets was performed in a fluidized bed reactor. The effects of algae addition on the syngas yield and carbon conversion rate were investigated. The addition of 10 wt % algae in wood increased the CO, H2, and CH4 yields by 3–20, 6–31, and 9–20%, respectively. At the same time, it decreased the CO2 yield by 3–18%. The carbon conversion rates were slightly increased with the addition of 10 wt % macroalgae in wood, but the microalgae addition resulted in a decrease of the carbon conversion rate by 8%. Meanwhile, the collected fly ash and bed material samples were analyzed using scanning electron microscopy combined with an energy-dispersive X-ray detector (SEM–EDX) and X-ray diffraction (XRD) technique. The fly ashes of wood/marcoalgae tests showed a higher Na content with lower Si and Ca contents compared to the wood test. The gasification tests were scheduled to last 4 h; however, only wood and wood/Derbersia gasification experiments were carried out without significant operational problems. The gasification of 10 wt % Oedogonium N+ and Oedogonium N– led to defluidization of the bed in less than 1 h, and the wood/Scenedesmus (WD/SA) test was stopped after 1.8 h as a result of severe agglomeration. It was found that the algae addition had a remarkable influence on the characteristics and compositions of the coating layer. The coating layer formation and bed agglomeration mechanism of wood/macroalgae was initiated by the reaction of alkali compounds with the bed particles to form low-temperature melting silicates (inner layer). For the WD/SA test, the agglomeration was influenced by both the composition of the original algae fuel as well as the external mineral contaminations. In summary, the operational problems experienced during the co-gasification tests of different algae–wood mixtures were assigned to the specific ash compositions of the different fuel mixtures. This showed the need |
---|---|
ISSN: | 0887-0624 1520-5029 1520-5029 |
DOI: | 10.1021/acs.energyfuels.5b02291 |