Consequential Life Cycle Assessment of Nitrogen Fertilisers Based on Biomass – a Swedish perspective
The production of mineral nitrogen represents a large fossil energy input in Swedish agriculture. However, mineral nitrogen can be produced in the Haber-Bosch synthesis, with input from renewable energy. This could lower the dependency on fossil energy and the emissions of greenhouse gases in agricu...
Gespeichert in:
Veröffentlicht in: | Insciences journal 2012-11, Vol.2, p.80-101 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The production of mineral nitrogen represents a large fossil energy input in Swedish agriculture. However, mineral nitrogen can be produced in the Haber-Bosch synthesis, with input from renewable energy. This could lower the dependency on fossil energy and the emissions of greenhouse gases in agricultural production. The aim of this study was to investigate the land use, energy use and greenhouse gas emissions from the production of ammonium nitrate based on biomass, using consequential life cycle assessment methodology. Three scenarios are studied. In one scenario the Haber-Bosch synthesis is integrated in an existing forest residue fired combined heat and power plant. In another two scenarios thermochemical gasification of biomass in combination with Haber-Bosch synthesis is studied, using either straw or short rotation coppice (Salix) as raw material. The results showed that the greenhouse gas emissions and use of fossil energy can be significantly lowered. The size of emission reductions compared to using fossil fuels as raw material is dependent on choice of data, but also choice of functional unit and if e.g. indirect land use change is included. The study also showed that using green nitrogen in rapeseed production substantially can lower the carbon footprint. Further, we argue that production of nitrogen based on renewables should be a high-priority activity, as nitrogen is one of the pillars for a secure food and bioenergy supply for a growing world population. |
---|---|
ISSN: | 1664-171X 1664-171X |
DOI: | 10.5640/insc.020480 |