In vitro and In vivo Association of Porcine Hepatic Cytochrome P450 3A and 2C Activities with Testicular Steroids

The aim of this study was to screen the inhibitory potential of several testicular steroids on cytochrome P450 3A (CYP3A) and 2C (CYP2C) activities in porcine liver microsomes. The microsomes used in this study were obtained from pubertal male pigs of two breeds, Landrace and Duroc. For the in vitro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reproduction in domestic animals 2012-12, Vol.47 (6), p.891-898
Hauptverfasser: Zamaratskaia, G, Zlabek, V, Ropstad, E, Andresen, Ø
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study was to screen the inhibitory potential of several testicular steroids on cytochrome P450 3A (CYP3A) and 2C (CYP2C) activities in porcine liver microsomes. The microsomes used in this study were obtained from pubertal male pigs of two breeds, Landrace and Duroc. For the in vitro inhibition study, porcine microsomes were incubated in the presence of 17β‐estradiol, 17α‐estradiol, androstenone, dehydroepiandrosterone and dihydrotestosterone. Both reversible and mechanism‐based inhibitions were examined. 7‐benzyloxyresorufin (BR) and 7‐benzyloxy‐4‐trifluoromethylcoumarin (BFC) were used as substrates for CYP3A, and diclofenac and tolbutamide (TB) as substrates for CYP2C. 7‐benzyloxyresorufin O‐dealkylase (BROD) activity was inhibited by all tested steroids in the microsomes from Landrace pigs via mechanism‐based mode, but in the microsomes from Duroc pigs, BROD activities were inhibited only in the presence of 17β‐oestradiol. Mechanism‐based inhibition of BFC metabolism by the tested steroids was observed in the microsomes from both breeds, but this inhibition was weak and did not exceed 20%. TB hydroxylase (TBOH) activity in the microsomes from Duroc pigs was inhibited by 17α‐oestradiol through the mechanism‐based mode of inhibition. None of the investigated steroids inhibited TBOH activity in Landrace pigs. For the in vivo study, male pigs were injected with a single dose of human chorionic gonadotropin (hCG) to stimulate testicular steroid production by the Leydig cells. In vivo stimulation with hGC did not alter BROD activity either in Landrace or in Duroc pigs. BFC metabolism was significantly induced by hCG stimulation in both breeds and TBOH activity only in Duroc pigs. Activity of diclofenac hydroxylase was not detected in either Landrace or Duroc pigs. Breed significantly affected BROD and TBOH activity with BROD being higher in Landrace and TBOH in Duroc pigs. This study improved our understanding of the role of testicular steroids in the regulation of porcine CYP450 activity.
ISSN:0936-6768
1439-0531
1439-0531
DOI:10.1111/j.1439-0531.2012.01986.x