Femtosecond X-ray protein nanocrystallography
Biological imaging with the LCLS X-ray laser The start-up of the Linac Coherent Light Source (LCLS), the new femtosecond hard X-ray laser facility in Stanford, California, has brought high expectations of a new era for biological imaging. The intense, ultrashort X-ray pulses allow diffraction imagin...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2011-02, Vol.470 (7332), p.73-77 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biological imaging with the LCLS X-ray laser
The start-up of the Linac Coherent Light Source (LCLS), the new femtosecond hard X-ray laser facility in Stanford, California, has brought high expectations of a new era for biological imaging. The intense, ultrashort X-ray pulses allow diffraction imaging of small structures before radiation damage occurs. Two papers in this issue of
Nature
present proof-of-concept experiments showing the LCLS in action. Chapman
et al
. tackle structure determination from nanocrystals of macromolecules that cannot be grown in large crystals. They obtain more than three million diffraction patterns from a stream of nanocrystals of the membrane protein photosystem I, and assemble a three-dimensional data set for this protein. Seibert
et al
. obtain images of a non-crystalline biological sample, mimivirus, by injecting a beam of cooled mimivirus particles into the X-ray beam.
The start-up of the new femtosecond hard X-ray laser facility in Stanford, the Linac Coherent Light Source, has brought high expectations for a new era for biological imaging. The intense, ultrashort X-ray pulses allow diffraction imaging of small structures before radiation damage occurs. This new capability is tested for the problem of structure determination from nanocrystals of macromolecules that cannot be grown in large crystals. Over three million diffraction patterns were collected from a stream of nanocrystals of the membrane protein complex photosystem I, which allowed the assembly of a three-dimensional data set for this protein, and proves the concept of this imaging technique.
X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded
1
,
2
,
3
. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source
4
. We prove this concept with nanocrystals of photosystem I, one of |
---|---|
ISSN: | 0028-0836 1476-4687 1476-4687 |
DOI: | 10.1038/nature09750 |