The importance of blue and green landscape connectivity for biodiversity in urban ponds
The negative impact of urbanization on biodiversity can be buffered by blue (e.g., rivers, ponds) and green (e.g., parks, forests) spaces. However, to prevent biodiversity loss and reduce the risk of local extinctions, blue and green spaces need to be connected by corridors, so that organisms may di...
Gespeichert in:
Veröffentlicht in: | Basic and applied ecology 2021-12, Vol.57, p.129-145 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The negative impact of urbanization on biodiversity can be buffered by blue (e.g., rivers, ponds) and green (e.g., parks, forests) spaces. However, to prevent biodiversity loss and reduce the risk of local extinctions, blue and green spaces need to be connected by corridors, so that organisms may disperse between sites. Landscape connectivity affects local community composition and metacommunity dynamics by facilitating dispersal. The goal of this study was to test the relative roles of pond environmental properties, spatial structure, and functional landscape connectivity on differentiation of invertebrate metacommunities in urban ponds in the city of Stockholm, Sweden. We characterized functional connectivity as blue connectivity (distance to water bodies), green connectivity (land use), and combined blue-green connectivity. We estimated functional connectivity by using electrical circuit theory to identify dispersal corridors. Interestingly, while circuit theory is often used in single-taxon studies, this method has rarely been applied to multiple taxa forming a metacommunity, as we have done in this study. Indeed, our study contributes toward an increased focus on the role of dispersal at the metacommunity level. We determined that functional connectivity was the most important factor in explaining community differentiation, with the local environment contributing comparatively little, and spatial structure the least. Combined blue-green functional connectivity had a major influence on structuring urban pond communities, explaining 7.8% of the variance in community composition across ponds. Furthermore, we found that increased functional connectivity was associated with an increase in the number of species. In summary, our results suggest that to preserve biodiversity in urban ponds, it is important to enhance functional connectivity, and that open green spaces could augment blue corridors in maintaining functional connectivity in urban pond metacommunities. To generalize these findings, future urban biodiversity studies should compare how functional connectivity affects metacommunities across multiple major cities.
[Display omitted] |
---|---|
ISSN: | 1439-1791 1618-0089 |
DOI: | 10.1016/j.baae.2021.10.004 |