Rare-Earth-Modified Titania Nanoparticles: Molecular Insight into Synthesis and Photochemical Properties

A molecular precursor approach to titania (anatase) nanopowders modified with different amounts of rare-earth elements (REEs: Eu, Sm, and Y) was developed using the interaction of REE nitrates with titanium alkoxides by a two-step solvothermal–combustion method. The nature of an emerging intermetall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2021-10, Vol.60 (19), p.14820-14830
Hauptverfasser: Svensson, Fredric G, Cojocaru, Bogdan, Qiu, Zhen, Parvulescu, Vasile, Edvinsson, Tomas, Seisenbaeva, Gulaim A, Tiseanu, Carmen, Kessler, Vadim G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A molecular precursor approach to titania (anatase) nanopowders modified with different amounts of rare-earth elements (REEs: Eu, Sm, and Y) was developed using the interaction of REE nitrates with titanium alkoxides by a two-step solvothermal–combustion method. The nature of an emerging intermetallic intermediate was revealed unexpectedly for the applied conditions via a single-crystal study of the isolated bimetallic isopropoxide nitrate complex [Ti2Y­( i PrO)9(NO3)2], a nonoxo-substituted compound. Powders of the final reaction products were characterized by powder X-ray diffraction, scanning electron microscopy–energy-dispersive spectroscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, Raman spectroscopy, and photoluminescence (PL). The addition of REEs stabilized the anatase phase up to ca. 700 °C before phase transformation into rutile became evident. The photocatalytic activity of titania modified with Eu3+ and Sm3+ was compared with that of Degussa P25 titania as the control. PL studies indicated the incorporation of Eu and Sm cations into titania (anatase) at lower annealing temperatures (500 °C), but an exclusion to the surface occurred when the annealing temperature was increased to 700 °C. The efficiency of the modified titania was inferior to the control titania while illuminated within narrow wavelength intervals (445–465 and 510–530 nm), but when subjected to a wide range of visible radiation, the Eu3+- and Sm3+-modified titania outperformed the control, which was attributed both to doping of the band structure of TiO2 with additional energy levels and to the surface chemistry of the REE-modified titania.
ISSN:0020-1669
1520-510X
1520-510X
DOI:10.1021/acs.inorgchem.1c02134