Stability of nonlinear AR-GARCH models

.  This article studies the stability of nonlinear autoregressive models with conditionally heteroskedastic errors. We consider a nonlinear autoregression of order p [AR(p)] with the conditional variance specified as a nonlinear first‐order generalized autoregressive conditional heteroskedasticity [...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of time series analysis 2008-05, Vol.29 (3), p.453-475
Hauptverfasser: Meitz, Mika, Saikkonen, Pentti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:.  This article studies the stability of nonlinear autoregressive models with conditionally heteroskedastic errors. We consider a nonlinear autoregression of order p [AR(p)] with the conditional variance specified as a nonlinear first‐order generalized autoregressive conditional heteroskedasticity [GARCH(1,1)] model. Conditions under which the model is stable in the sense that its Markov chain representation is geometrically ergodic are provided. This implies the existence of an initial distribution such that the process is strictly stationary and β‐mixing. Conditions under which the stationary distribution has finite moments are also given. The results cover several nonlinear specifications recently proposed for both the conditional mean and conditional variance, and only require mild moment conditions.
ISSN:0143-9782
1467-9892
1467-9892
DOI:10.1111/j.1467-9892.2007.00562.x