Random symmetric matrices with a constraint: the spectral density of random impedance networks
We derive the mean eigenvalue density for symmetric Gaussian random N x N matrices in the limit of large N, with a constraint implying that the row sum of matrix elements should vanish. The result is shown to be equivalent to a result found recently for the average density of resonances in random im...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2003-04, Vol.67 (4 Pt 2), p.047101-047101, Article 047101 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive the mean eigenvalue density for symmetric Gaussian random N x N matrices in the limit of large N, with a constraint implying that the row sum of matrix elements should vanish. The result is shown to be equivalent to a result found recently for the average density of resonances in random impedance networks [Y.V. Fyodorov, J. Phys. A 32, 7429 (1999)]. In the case of banded matrices, the analytical results are compared with those extracted from the numerical solution of Kirchhoff equations for quasi-one-dimensional random impedance networks. |
---|---|
ISSN: | 1539-3755 1063-651X 1095-3787 |
DOI: | 10.1103/PhysRevE.67.047101 |