Gene expression during redifferentiation of human articular chondrocytes

The aim of the present study was to investigate gene expression during the in vitro redifferentiation process of human articular chondrocytes isolated from clinical samples from patient undergoing an autologous chondrocyte transplantation therapy (ACT). Monolayer (ML) expanded human articular chondr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Osteoarthritis and cartilage 2004-07, Vol.12 (7), p.525-535
Hauptverfasser: Tallheden, Tommi, Karlsson, Camilla, Brunner, Andreas, van der Lee, Josefine, Hagg, Rupert, Tommasini, Roberto, Lindahl, Anders
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of the present study was to investigate gene expression during the in vitro redifferentiation process of human articular chondrocytes isolated from clinical samples from patient undergoing an autologous chondrocyte transplantation therapy (ACT). Monolayer (ML) expanded human articular chondrocytes from four donors were cultured in a 3D pellet model and the redifferentiation was investigated by biochemistry, histology, immunohistochemistry and microarray analysis. The culture expanded chondrocytes redifferentiated in the pellet model as seen by an increase in collagen type II immunoreactivity between day 7 and 14. The gene expression from ML to pellet at day 7 included an increase in cartilage matrix proteins like collagen type XI, tenascin C, dermatopontin, COMP and fibronectin. The late phase consisted of a strong downregulation of extracellular signal-regulated protein kinase (ERK-1) and an upregulation of p38 kinase and SOX-9, suggesting that the late phase mimicked parts of the signaling processes involved in the early chondrogenesis in limb bud cells. Other genes, which indicated a transition from proliferation to tissue formation, were the downregulated cell cycle genes GSPT1 and the upregulated growth-arrest-specific protein (gas). The maturation of the pellets included no signs of hypertrophy or apoptosis as seen by downregulation of collagen type X, Matrix Gla protein and increased expression of caspase 3. Our data show that human articular chondrocytes taken from surplus cells of patient undergoing ACT treatment and expanded in ML, redifferentiate and form cartilage like matrix in vitro and that this dynamic process involves genes known to be expressed in early chondrogenesis.
ISSN:1063-4584
1522-9653
DOI:10.1016/j.joca.2004.03.004