Hermitian Yang–Mills connections on pullback bundles

We investigate hermitian Yang–Mills connections on pullback bundles with respect to adiabatic classes on the total space of holomorphic submersions with connected fibres. Under some technical assumptions on the graded object of a Jordan–Hölder filtration, we obtain a necessary and sufficient criteri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calc.Var.Part.Differ.Equ 2024, Vol.63 (1), Article 13
Hauptverfasser: Sektnan, Lars Martin, Tipler, Carl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate hermitian Yang–Mills connections on pullback bundles with respect to adiabatic classes on the total space of holomorphic submersions with connected fibres. Under some technical assumptions on the graded object of a Jordan–Hölder filtration, we obtain a necessary and sufficient criterion for when the pullback of a strictly semistable vector bundle will carry an hermitian Yang–Mills connection, in terms of intersection numbers on the base of the submersion. Together with the classical Donaldson–Uhlenbeck–Yau correspondence, we deduce that the pullback of a stable (resp. unstable) bundle remains stable (resp. unstable) for adiabatic classes, and settle the semi-stable case.
ISSN:0944-2669
1432-0835
1432-0835
DOI:10.1007/s00526-023-02618-z