Impacts of land-use change and urban development on carbon sequestration in tropical seagrass meadow sediments

Seagrass meadows store significant carbon stocks at a global scale, but land-use change and other anthropogenic activities can alter the natural process of organic carbon (Corg) accumulation. Here, we assessed the carbon accumulation history of two seagrass meadows in Zanzibar (Tanzania) that have e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine environmental research 2022-04, Vol.176, p.105608-105608, Article 105608
Hauptverfasser: Dahl, Martin, Ismail, Rashid, Braun, Sara, Masqué, Pere, Lavery, Paul S., Gullström, Martin, Arias-Ortiz, Ariane, Asplund, Maria E., Garbaras, Andrius, Lyimo, Liberatus D., Mtolera, Matern S.P., Serrano, Oscar, Webster, Chanelle, Björk, Mats
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Seagrass meadows store significant carbon stocks at a global scale, but land-use change and other anthropogenic activities can alter the natural process of organic carbon (Corg) accumulation. Here, we assessed the carbon accumulation history of two seagrass meadows in Zanzibar (Tanzania) that have experienced different degrees of disturbance. The meadow at Stone Town has been highly exposed to urban development during the 20th century, while the Mbweni meadow is located in an area with relatively low impacts but historical clearing of adjacent mangroves. The results showed that the two sites had similar sedimentary Corg accumulation rates (22–25 g m−2 yr−1) since the 1940s, while during the last two decades (∼1998 until 2018) they exhibited 24–30% higher accumulation of Corg, which was linked to shifts in Corg sources. The increase in the δ13C isotopic signature of sedimentary Corg (towards a higher seagrass contribution) at the Stone Town site since 1998 points to improved seagrass meadow conditions and Corg accumulation capacity of the meadow after the relocation of a major sewage outlet in the mid–1990s. In contrast, the decrease in the δ13C signatures of sedimentary Corg in the Mbweni meadow since the early 2010s was likely linked to increased Corg run-off of mangrove/terrestrial material following mangrove deforestation. This study exemplifies two different pathways by which land-based human activities can alter the carbon storage capacity of seagrass meadows (i.e. sewage waste management and mangrove deforestation) and showcases opportunities for management of vegetated coastal Corg sinks. [Display omitted] •The seagrass carbon accumulation rate was 22–25 g Corg m−2 yr−1.•The rate of carbon accumulation had increased by 24–30% during the last ∼20 years.•The increase in carbon storage was likely due to land-use change.•This study highlights the importance of land-sea connectivity for blue carbon sinks.
ISSN:0141-1136
1879-0291
1879-0291
DOI:10.1016/j.marenvres.2022.105608