BMP-3 Promotes Matrix Production in Co-cultured Stem Cells and Disc Cells from Low Back Pain Patients
Low back pain is one of the most common disorders and believed to be due to intervertebral disc degeneration. Transplantation of human mesenchymal stem cells (hMSCs) is suggested as potential treatment option. Bone morphogenetic growth factor 3 (BMP-3) promotes chondrogenesis and is proven effective...
Gespeichert in:
Veröffentlicht in: | Tissue engineering. Part A 2020-01, Vol.26 (1-2), p.47-56 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Low back pain is one of the most common disorders and believed to be due to intervertebral disc degeneration. Transplantation of human mesenchymal stem cells (hMSCs) is suggested as potential treatment option. Bone morphogenetic growth factor 3 (BMP-3) promotes chondrogenesis and is proven effective in enhancing chondrogenesis in hMSCs pretreated with interleukin-1 beta (IL-1β) in hydrogel model. Three-dimensional co-cultures of hMSCs and disc cells (DCs) have previously been demonstrated to result in increased proteoglycan production. The aim was to study the effects of BMP-3 on hMSCs, DCs, as well as hMSCs and DCs in co-culture in a pellet system, both as single treatment and after pretreatment of IL-1β. Cell pellet cultures with hMSCs, DCs, and co-culture (1:1 ratio) were performed and stimulated with BMP-3 at 1 or 10 ng/mL concentrations. For pretreatment (PRE-T), cell pellets were first stimulated with IL-1β, for 24 h, and then BMP-3. The pellets were harvested on day 7, 14, and 28. Results demonstrated that BMP-3 stimulation at 10 ng/mL promoted cell viability, proteoglycan accumulation, as well as chondrogenesis in all pellet groups compared to 1 ng/mL. Cellular proliferation and chondrogenic differentiation of hMSCs were best promoted by PRE-T at 10 ng/mL, whereas BMP-3 best enhanced chondrogenesis in DC and co-culture pellets at the same concentration. |
---|---|
ISSN: | 1937-3341 1937-335X |
DOI: | 10.1089/ten.tea.2019.0125 |