Muscle ion transporters and antioxidative proteins have different adaptive potential in arm than in leg skeletal muscle with exercise training
It was evaluated whether upper‐body compared to lower‐body musculature exhibits a different phenotype in relation to capacity for handling reactive oxygen species (ROS), H+, La−, Na+, K+ and also whether it differs in adaptive potential to exercise training. Eighty‐three sedentary premenopausal wome...
Gespeichert in:
Veröffentlicht in: | Physiological reports 2017-10, Vol.5 (19), p.e13470-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It was evaluated whether upper‐body compared to lower‐body musculature exhibits a different phenotype in relation to capacity for handling reactive oxygen species (ROS), H+, La−, Na+, K+ and also whether it differs in adaptive potential to exercise training. Eighty‐three sedentary premenopausal women aged 45 ± 6 years (mean ± SD) were randomized into a high‐intensity intermittent swimming group (HIS, n = 21), a moderate‐intensity swimming group (MOS, n = 21), a soccer group (SOC, n = 21), or a control group (CON, n = 20). Intervention groups completed three weekly training sessions for 15 weeks, and pre‐ and postintervention biopsies were obtained from deltoideus and vastus lateralis muscle. Before training, monocarboxylate transporter 4 (MCT4), Na+/K+ pump α2, and superoxide dismutase 2 (SOD2) expressions were lower (P |
---|---|
ISSN: | 2051-817X 2051-817X |
DOI: | 10.14814/phy2.13470 |