Host knockout of E-prostanoid 2 receptors reduces tumor growth and causes major alterations of gene expression in prostaglandin E2-producing tumors
Prostaglandin E2 (PGE2) is elevated in a variety of malignant tumors and has been shown to affect several hallmarks of cancer. Accordingly, the PGE2 receptor, E-prostanoid 2 (EP2), has been reported to be associated with patient survival and reduced tumor growth in EP2-knockout mice. Thus, the aim o...
Gespeichert in:
Veröffentlicht in: | Oncology letters 2017-01, Vol.13 (1), p.476-482 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Prostaglandin E2 (PGE2) is elevated in a variety of malignant tumors and has been shown to affect several hallmarks of cancer. Accordingly, the PGE2 receptor, E-prostanoid 2 (EP2), has been reported to be associated with patient survival and reduced tumor growth in EP2-knockout mice. Thus, the aim of the present study was to screen for major gene expression alterations in tumor tissue growing in EP2-knockout mice. EP2-knockout mice were bred and implanted with EP2 receptor-expressing and PGE2-producing epithelial-like tumors. Tumor tissue and plasma were collected and used for analyses with gene expression microarrays and multiplex enzyme-linked immunosorbent assays. Tumor growth, acute phase reactions/systemic inflammation and the expression of interleukin-6 were reduced in EP2-knockout tumor-bearing mice. Several hundreds of genes displayed major changes of expression in the tumor tissue when grown in EP2-knockout mice. Such gene alterations involved several different cellular functions, including stemness, migration and cell signaling. Besides gene expression, several long non-coding RNAs were downregulated in the tumors from the EP2-knockout mice. Overall, PGE2 signaling via host EP2 receptors affected a large number of different genes involved in tumor progression based on signaling between host stroma and tumor cells, which caused reduced tumor growth. |
---|---|
ISSN: | 1792-1074 1792-1082 1792-1082 |
DOI: | 10.3892/ol.2016.5448 |