Hyperthyroidism Increases Brown Fat Metabolism in Humans

Context: Thyroid hormones are important regulators of brown adipose tissue (BAT) development and function. In rodents, BAT metabolism is up-regulated by thyroid hormones. Objective: The purpose of this article was to investigate the impact of hyperthyroidism on BAT metabolism in humans. Design: This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of clinical endocrinology and metabolism 2014-01, Vol.99 (1), p.E28-E35
Hauptverfasser: Lahesmaa, Minna, Orava, Janne, Schalin-Jäntti, Camilla, Soinio, Minna, Hannukainen, Jarna C, Noponen, Tommi, Kirjavainen, Anna, Iida, Hidehiro, Kudomi, Nobuyuki, Enerbäck, Sven, Virtanen, Kirsi A, Nuutila, Pirjo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Context: Thyroid hormones are important regulators of brown adipose tissue (BAT) development and function. In rodents, BAT metabolism is up-regulated by thyroid hormones. Objective: The purpose of this article was to investigate the impact of hyperthyroidism on BAT metabolism in humans. Design: This was a follow-up study using positron emission tomography imaging. Main Outcome Measures: Glucose uptake (GU) and perfusion of BAT, white adipose tissue, skeletal muscle, and thyroid gland were measured using [18F]2-fluoro-2-deoxy-d-glucose and [15O]H2O and positron emission tomography in 10 patients with overt hyperthyroidism and in 8 healthy participants. Five of the hyperthyroid patients were restudied after restoration of euthyroidism. Supraclavicular BAT was quantified with magnetic resonance imaging or computed tomography and energy expenditure (EE) with indirect calorimetry. Results: Compared with healthy participants, hyperthyroid participants had 3-fold higher BAT GU (2.7 ± 2.3 vs 0.9 ± 0.1 μmol/100 g/min, P = .0013), 90% higher skeletal muscle GU (P < .005), 45% higher EE (P < .005), and a 70% higher lipid oxidation rate (P = .001). These changes were reversible after restoration of euthyroidism. During hyperthyroidism, serum free T4 and free T3 were strongly associated with EE and lipid oxidation rates (P < .001). TSH correlated inversely with BAT and skeletal muscle glucose metabolism (P < .001). Hyperthyroidism had no effect on BAT perfusion, whereas it stimulated skeletal muscle perfusion (P = .04). Thyroid gland GU did not differ between hyperthyroid and euthyroid study subjects. Conclusions: Hyperthyroidism increases GU in BAT independently of BAT perfusion. Hyperthyroid patients are characterized by increased skeletal muscle metabolism and lipid oxidation rates.
ISSN:0021-972X
1945-7197
DOI:10.1210/jc.2013-2312