Leaving the innermost stable circular orbit: the inner edge of a black-hole accretion disk at various luminosities
The “radiation inner edge” of an accretion disk is defined as the inner boundary of the region from which most of the luminosity emerges. Similarly, the “reflection edge” is the smallest radius capable of producing a significant X-ray reflection of the fluorescent iron line. For black hole accretion...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2010-10, Vol.521, p.A15 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The “radiation inner edge” of an accretion disk is defined as the inner boundary of the region from which most of the luminosity emerges. Similarly, the “reflection edge” is the smallest radius capable of producing a significant X-ray reflection of the fluorescent iron line. For black hole accretion disks with very sub-Eddington luminosities these and all other “inner edges” coexist at the innermost stable circular orbit (ISCO). Thus, in this case, one may rightly consider ISCO as the unique inner edge of the black hole accretion disk. However, even at moderate luminosities, there is no such unique inner edge because differently defined edges are located at different places. Several of them are significantly closer to the black hole than ISCO. These differences grow with the increasing luminosity. For nearly Eddington luminosities, they are so huge that the notion of the inner edge loses all practical significance. |
---|---|
ISSN: | 0004-6361 1432-0746 1432-0756 |
DOI: | 10.1051/0004-6361/201014467 |