On the Superconvergence of Galerkin Methods for Hyperbolic IBVP
Finite-element Galerkin methods using B-splines of order r for periodic first-order hyperbolic equations exhibit superconvergence on uniform grids (mesh size h) at the nodes; i.e., there is an error estimate O (hr). In this paper it will be shown that no matter how the approximating subspace Shis mo...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1996-10, Vol.33 (5), p.1778-1796 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Finite-element Galerkin methods using B-splines of order r for periodic first-order hyperbolic equations exhibit superconvergence on uniform grids (mesh size h) at the nodes; i.e., there is an error estimate O (hr). In this paper it will be shown that no matter how the approximating subspace Shis modified in a boundary layer [ 0, (s - 1)h], s arbitrary but fixed, the superconvergence property is lost for the hyperbolic model problem$u_t = u_x, 0 \leq\le x < \infty, t \geq 0$. We shall also discuss the implications of this result when constructing compact implicit difference schemes. |
---|---|
ISSN: | 0036-1429 1095-7170 1095-7170 |
DOI: | 10.1137/S0036142993257689 |