On the Superconvergence of Galerkin Methods for Hyperbolic IBVP

Finite-element Galerkin methods using B-splines of order r for periodic first-order hyperbolic equations exhibit superconvergence on uniform grids (mesh size h) at the nodes; i.e., there is an error estimate O (hr). In this paper it will be shown that no matter how the approximating subspace Shis mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 1996-10, Vol.33 (5), p.1778-1796
Hauptverfasser: Gottlieb, David, Gustafsson, Bertil, Olsson, Pelle, Strand, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Finite-element Galerkin methods using B-splines of order r for periodic first-order hyperbolic equations exhibit superconvergence on uniform grids (mesh size h) at the nodes; i.e., there is an error estimate O (hr). In this paper it will be shown that no matter how the approximating subspace Shis modified in a boundary layer [ 0, (s - 1)h], s arbitrary but fixed, the superconvergence property is lost for the hyperbolic model problem$u_t = u_x, 0 \leq\le x < \infty, t \geq 0$. We shall also discuss the implications of this result when constructing compact implicit difference schemes.
ISSN:0036-1429
1095-7170
1095-7170
DOI:10.1137/S0036142993257689