Orexin-A-induced Ca2+ entry: evidence for involvement of trpc channels and protein kinase C regulation

The orexins are peptide transmitters/hormones, which exert stimulatory actions in many types of cells via the G-protein-coupled OX(1) and OX(2) receptors. Our previous results have suggested that low (subnanomolar) concentrations of orexin-A activate Ca(2+) entry, whereas higher concentrations activ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2005-01, Vol.280 (3), p.1771-1781
Hauptverfasser: Larsson, Kim P, Peltonen, Hanna M, Bart, Genevieve, Louhivuori, Lauri M, Penttonen, Annika, Antikainen, Miia, Kukkonen, Jyrki P, Akerman, Karl E O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The orexins are peptide transmitters/hormones, which exert stimulatory actions in many types of cells via the G-protein-coupled OX(1) and OX(2) receptors. Our previous results have suggested that low (subnanomolar) concentrations of orexin-A activate Ca(2+) entry, whereas higher concentrations activate phospholipase C, Ca(2+) release, and capacitative Ca(2+) entry. As shown here, the Ca(2+) response to subnanomolar orexin-A concentrations was blocked by activation of protein kinase C by using different approaches (12-O-tetradecanoylphorbol acetate, dioctanoylglycerol, and diacylglycerol kinase inhibition) and protein phosphatase inhibition by calyculin A. The Ca(2+) response to subnanomolar orexin-A concentrations was also blocked by Mg(2+), dextromethorphan, and tetraethylammonium. These treatments neither affected the response to high concentrations of orexin-A nor the thapsigargin-stimulated capacitative entry. The capacitative entry was instead strongly suppressed by SKF96365. An inward membrane current activated by subnanomolar concentrations of orexin-A and the currents activated upon transient expression of trpc3 channels were also sensitive to Mg(2+), dextromethorphan, and tetraethylammonium. Responses to subnanomolar concentrations of orexin-A (Ca(2+) elevation, inward current, and membrane depolarization) were voltage-dependent with a loss of the response around -15 mV. By using reverse transcription-PCR, mRNA for the trpc1-4 channel isoforms were detected in the CHO-hOX1-C1 cells. The expression of truncated TRPC channel isoforms, in particular trpc1 and trpc3, reduced the response to subnanomolar concentrations of orexin-A but did not affect the response to higher concentrations of orexin-A. The results suggest that activation of the OX(1) receptor leads to opening of a Ca(2+)-permeable channel, involving trpc1 and -3, which is controlled by protein kinase C.
ISSN:0021-9258
DOI:10.1074/jbc.M406073200