Gene expression based classification of gastric carcinoma

The aim of the present work is to identify molecular markers that allow classification of gastric carcinoma with respect to important clinicopathological parameters. Gastric adenocarcinomas were subjected to cDNA microarray analysis with a 2.504 gene probe set. Using the Rosetta rough-set based lear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer letters 2004-07, Vol.210 (2), p.227-237
Hauptverfasser: Nørsett, Kristin G, Lægreid, Astrid, Midelfart, Herman, Yadetie, Fekadu, Erlandsen, Sten Even, Falkmer, Sture, Grønbech, Jon E, Waldum, Helge L, Komorowski, Jan, Sandvik, Arne K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of the present work is to identify molecular markers that allow classification of gastric carcinoma with respect to important clinicopathological parameters. Gastric adenocarcinomas were subjected to cDNA microarray analysis with a 2.504 gene probe set. Using the Rosetta rough-set based learning system, good classifiers were generated for gene-expression based prediction of intestinal or diffuse growth pattern according to Laurén's classification and presence of lymph node metastases. To our knowledge, this is the first study on gastric carcinoma in which molecular classification has been achieved for more than one clinicopathological parameter based on microarray gene expression profiles.
ISSN:0304-3835
1872-7980
DOI:10.1016/j.canlet.2004.01.022