Boron Surface Treatment of Li 7 La 3 Zr 2 O 12 Enabling Solid Composite Electrolytes for Li-Metal Battery Applications
Despite being promoted as a superior Li-ion conductor, lithium lanthanum zirconium oxide (LLZO) still suffers from a number of shortcomings when employed as an active ceramic filler in composite polymer-ceramic solid electrolytes for rechargeable all-solid-state lithium metal batteries. One of the m...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2024-11, p.e202401304 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite being promoted as a superior Li-ion conductor, lithium lanthanum zirconium oxide (LLZO) still suffers from a number of shortcomings when employed as an active ceramic filler in composite polymer-ceramic solid electrolytes for rechargeable all-solid-state lithium metal batteries. One of the main limitations is the detrimental presence of Li
CO
on the surface of LLZO particles, restricting Li-ion transport at the polymer-ceramic interfaces. In this work, a facile way to improve this interface is presented, by purposely engineering the LLZO particle surfaces for a better compatibility with a PEO:LiTFSI solid polymer electrolyte matrix. It is shown that a surface treatment based on immersing LLZO particles in a boric acid solution can improve the LLZO surface chemistry, resulting in an enhancement in the ionic conductivity and cation transference number of the CPE with 20 wt % of boron-treated LLZO particles compared to the analogous CPE with non-treated LLZO. Ultimately, an improved cycling performance and stability in Li//LiFePO
cells was also demonstrated for the modified material. |
---|---|
ISSN: | 1864-5631 1864-564X 1864-564X |
DOI: | 10.1002/cssc.202401304 |