From Insulator to Superconductor: A Series of Pressure-Driven Transitions in Quasi-One-Dimensional TiS 3 Nanoribbons

Transition metal trichalcogenides (TMTCs) offer remarkable opportunities for tuning electronic states through modifications in chemical composition, temperature, and pressure. Despite considerable interest in TMTCs, there remain significant knowledge gaps concerning the evolution of their electronic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-05, Vol.24 (18), p.5562-5569
Hauptverfasser: Abdel-Hafiez, Mahmoud, Shi, Li Fen, Cheng, Jinguang, Gorlova, Irina G, Zybtsev, Sergey G, Pokrovskii, Vadim Ya, Ao, Lingyi, Huang, Junwei, Yuan, Hongtao, Titov, Alexsandr N, Eriksson, Olle, Ong, Chin Shen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transition metal trichalcogenides (TMTCs) offer remarkable opportunities for tuning electronic states through modifications in chemical composition, temperature, and pressure. Despite considerable interest in TMTCs, there remain significant knowledge gaps concerning the evolution of their electronic properties under compression. In this study, we employ experimental and theoretical approaches to comprehensively explore the high-pressure behavior of the electronic properties of TiS , a quasi-one-dimensional (Q1D) semiconductor, across various temperature ranges. Through high-pressure electrical resistance and magnetic measurements at elevated pressures, we uncover a distinctive sequence of phase transitions within TiS , encompassing a transformation from an insulating state at ambient pressure to the emergence of an incipient superconducting state above 70 GPa. Our findings provide compelling evidence that superconductivity at low temperatures of ∼2.9 K is a fundamental characteristic of TiS , shedding new light on the intriguing high-pressure electronic properties of TiS and underscoring the broader implications of our discoveries for TMTCs in general.
ISSN:1530-6984
1530-6992
1530-6992
DOI:10.1021/acs.nanolett.4c00824