A generalized Hermite–Biehler theorem and non-Hermitian perturbations of Jacobi matrices

The classical Hermite–Biehler theorem describes the zero configuration of a complex linear combination of two real polynomials whose zeros are real, simple, and strictly interlace. We provide the full characterization of the zero configuration for the case when this interlacing is broken at exactly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2024-08, Vol.536 (2), p.128241, Article 128241
Hauptverfasser: Kozhan, Rostyslav, Tyaglov, Mikhail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The classical Hermite–Biehler theorem describes the zero configuration of a complex linear combination of two real polynomials whose zeros are real, simple, and strictly interlace. We provide the full characterization of the zero configuration for the case when this interlacing is broken at exactly one location. We apply this result to solve the direct and inverse spectral problem for non-Hermitian rank-one multiplicative perturbations and rank-two additive perturbations of finite Hermitian and Jacobi matrices.
ISSN:0022-247X
1096-0813
1096-0813
DOI:10.1016/j.jmaa.2024.128241