Emergent half-metal with mixed structural order in (111)-oriented (LaMnO 3 ) 2n |(SrMnO 3 ) n superlattices

Using first-principles techniques, we study the structural, magnetic, and electronic properties of (111)-oriented (LaMnO 3 ) 2n |(SrMnO 3 ) n superlattices of varying thickness (n = 2, 4, 6). We find that the properties of the thinnest superlattice (n = 2) are similar to the celebrated half-metallic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2024-01, Vol.109 (4)
Hauptverfasser: Cossu, Fabrizio, Do Nascimento, Julio Alves, Cavill, Stuart A., Di Marco, Igor, Lazarov, Vlado K., Kim, Heung-Sik
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using first-principles techniques, we study the structural, magnetic, and electronic properties of (111)-oriented (LaMnO 3 ) 2n |(SrMnO 3 ) n superlattices of varying thickness (n = 2, 4, 6). We find that the properties of the thinnest superlattice (n = 2) are similar to the celebrated half-metallic ferromagnetic alloy La 2/3 Sr 1/3 MnO 3 , with quenched Jahn-Teller distortions. At intermediate thickness (n = 4), the a - a - a - tilting pattern transitions to the a - a - c + tilting pattern, driven by the lattice degrees of freedom in the LaMnO 3 region. The emergence of the Jahn-Teller modes and the spatial extent needed for their development play a key role in this structural transition. For the largest thickness considered (n = 6), we unveil an emergent separation of Jahn-Teller and volume-breathing orders in the ground-state structure with the a - a - c + tilting pattern, whereas it vanishes in the antiferromagnetic configurations. The ground state of all superlattices is half-metallic ferromagnetic, not affected by the underlying series of structural transitions. Overall, these results outline a thickness-induced crossover between the physical properties of bulk La 2/3 Sr 1/3 MnO 3 and bulk LaMnO 3 .
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.109.045435