Model-Based Interspecies Scaling for Predicting Human Pharmacokinetics of CB 4332, a Complement Factor I Protein
Interspecies scaling of the pharmacokinetics (PK) of CB 4332, a 150 kDa recombinant complement factor I protein, was performed using traditional and model-based approaches to inform first-in-human dose selection. Plasma concentration versus time data from four preclinical PK studies of single intrav...
Gespeichert in:
Veröffentlicht in: | Journal of pharmaceutical sciences 2024-09, Vol.113 (9), p.2895-2903 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interspecies scaling of the pharmacokinetics (PK) of CB 4332, a 150 kDa recombinant complement factor I protein, was performed using traditional and model-based approaches to inform first-in-human dose selection. Plasma concentration versus time data from four preclinical PK studies of single intravenous and subcutaneous (SC) CB 4332 dosing in mice, rats and nonhuman primates (NHPs) were modeled simultaneously using naive pooling including allometric scaling. The human-equivalent dose was calculated using the preclinical no observed adverse effect level (NOAEL) as part of the dose-by-factor approach. Pharmacokinetic modeling of CB 4332 revealed species-specific differences in the elimination, which was accounted for by including an additional rat-specific clearance. Signs of anti-drug antibodies (ADA) formation in all rats and some NHPs were observed. Consequently, an additional ADA-induced clearance parameter was estimated including the time of onset. The traditional dose-by-factor approach calculated a maximum recommended starting SC dose of 0.9 mg/kg once weekly, which was predicted it to result in a trough steady-state concentration lower than the determined efficacy target range for CB 4332 in humans. Model simulations predicted the efficacy target range to be reached using 5 mg/kg once weekly SC dosing.
[Display omitted]
•Three-species model-based scaling accounts for species-specific differences in protein elimination.•Model-based scaling can characterize the preclinical immunogenicity against proteins.•Model-based scaling is not sensitive to potential uncertainties in the exponents. |
---|---|
ISSN: | 0022-3549 1520-6017 1520-6017 |
DOI: | 10.1016/j.xphs.2024.06.022 |