2 -representations of small quotients of Soergel bimodules in infinite types
We determine for which Coxeter types the associated small quotient of the 2-category of Soergel bimodules is finitary and, for such a small quotient, classify the simple transitive 2-representations (sometimes under the additional assumption of gradability). We also describe the underlying categorie...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2023-06, Vol.151 (6), p.2277-2290 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We determine for which Coxeter types the associated small quotient of the 2-category of Soergel bimodules is finitary and, for such a small quotient, classify the simple transitive 2-representations (sometimes under the additional assumption of gradability). We also describe the underlying categories of the simple transitive 2-representations. For the small quotients of general Coxeter types, we give a description for the cell 2-representations. |
---|---|
ISSN: | 0002-9939 1088-6826 1088-6826 |
DOI: | 10.1090/proc/14584 |