Utilizing Helium Ion Chemistry to Derive Mixing Ratios of Heavier Neutral Species in Saturn's Equatorial Ionosphere

A surprisingly strong influx of organic‐rich material into Saturn's upper atmosphere from its rings was observed during the proximal obits of the Grand Finale of the Cassini mission. Measurements by the Ion and Neutral Mass Spectrometer (INMS) gave insights into the composition of the material,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2023-06, Vol.128 (6), p.n/a
Hauptverfasser: Dreyer, Joshua, Vigren, Erik, Johansson, Fredrik L., Waite, J. Hunter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A surprisingly strong influx of organic‐rich material into Saturn's upper atmosphere from its rings was observed during the proximal obits of the Grand Finale of the Cassini mission. Measurements by the Ion and Neutral Mass Spectrometer (INMS) gave insights into the composition of the material, but it remains to be resolved what fraction of the inferred heavy volatiles should be attributed as originating from the fragmentation of dust particles in the instrument versus natural ablation of grains in the atmosphere. In the present study, we utilize measured light ion and neutral densities to further constrain the abundances of heavy volatiles in Saturn's ionosphere through a steady‐state model focusing on helium ion chemistry. We first show that the principal loss mechanism of He+ in Saturn's equatorial ionosphere is through reactions with species other than H2. Based on the assumption of photochemical equilibrium at altitudes below 2,500 km, we then proceed by estimating the mixing ratio of heavier volatiles down to the closest approaches for Cassini's proximal orbits 288 and 292. Our derived mixing ratios for the inbound part of both orbits fall below those reported from direct measurements by the INMS, with values of ∼2 × 10−4 at closest approaches and order‐of‐magnitude variations in either direction over the orbits. This aligns with previous suggestions that a large fraction of the neutrals measured by the INMS stems from the fragmentation of infalling dust particles that do not significantly ablate in the considered part of Saturn's atmosphere and are thus unavailable for reactions. Plain Language Summary During the final orbits of the Cassini mission, the spacecraft flew between Saturn's rings and the planets upper atmosphere. The onboard plasma instruments detected a large amount of ring particles falling toward the planet, but direct measurements of the composition of these grains are complicated due to the high spacecraft speed and instrumental effects. In this study, we present an independent method to estimate the abundance of heavier neutral species entering the atmosphere from infalling ring material. This method relies on helium ion chemistry and the measured light ion and neutral densities. Our results generally fall below those inferred from direct measurements. Together with comparisons to other studies, this potentially suggests that a large fraction of the infalling neutral species do not significantly ablate in the considered part of Sat
ISSN:2169-9380
2169-9402
2169-9402
DOI:10.1029/2023JA031488