Localization and comparative toxicity of methylsulfonyl-2,5- and 2,6-dichlorobenzene in the olfactory mucosa of mice

Several methylsulfonyl (MeSO2) metabolites formed from chlorinated aromatic hydrocarbons have been identified in human milk, lung, and body fat, as well as in the tissues of Baltic grey seals and arctic polar bears. The tissue localization and nasal toxicity of two methylsulfonyl-substituted dichlor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicological sciences 1999-05, Vol.49 (1), p.116-123
Hauptverfasser: BAHRAMI, F, BRITTEBO, E. B, BERGMAN, A, LARSSON, C, BRANDT, I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several methylsulfonyl (MeSO2) metabolites formed from chlorinated aromatic hydrocarbons have been identified in human milk, lung, and body fat, as well as in the tissues of Baltic grey seals and arctic polar bears. The tissue localization and nasal toxicity of two methylsulfonyl-substituted dichlorobenzenes (diCl-MeSO2-B), with the chlorine atoms in the 2,5-, and 2,6- positions, were investigated in female NMRI and C57B1 mice. Using tape-section autoradiography, animals dosed i.v. with 14C-labeled 2,5-, or 2,6-(diCl-MeSO2-B) showed a preferential uptake of radioactivity in the olfactory mucosa and the tracheobronchial epithelium. Histopathology showed that 2,6-(diCl-MeSO2-B) is a potent toxicant that induces necrosis in the olfactory mucosa following a single dose as low as 4 mg/kg (i.p. injection), whereas 2,5-(diCl-MeSO2-B) induced no signs of toxicity in the olfactory mucosa at doses as high as 130 mg/kg (i.p. injection). Necrosis of the Bowman's glands was the first sign of 2,6-(diCl-MeSO2-B)-induced toxicity followed by degeneration of the neuroepithelium, which implies that the Bowman's gland may be the primary site of toxicity and degeneration of the neuroepithelium may be a secondary effect. Administration of the parent compounds, 1,3-dichlorobenzene and 1,4-dichlorobenzene, or the chlorinated analog 1,2,3-trichlorobenzene (85, 85, and 105 mg/kg, respectively; i.p. injection), induced no signs of toxicity in the olfactory mucosa. These and previous results suggest that 2,6-positioned chlorine atoms and an electron withdrawing substituent in the primary position is an arrangement that predisposes for toxicity in the olfactory mucosa.
ISSN:1096-6080
1096-0929
1096-0929
DOI:10.1093/toxsci/49.1.116