Development of a Radiochemical Cyclooxygenase-1 and -2 in Vitro Assay for Identification of Natural Products as Inhibitors of Prostaglandin Biosynthesis
A radiochemical enzyme assay for studying cyclooxygenase (COX)-catalyzed prostaglandin biosynthesis in vitro was optimized with respect to both COX-1 and COX-2 activity. The assay can be used to assess the relative selectivity of plant-derived inhibitors on COX-1 and COX-2. Assay conditions were opt...
Gespeichert in:
Veröffentlicht in: | Journal of natural products (Washington, D.C.) D.C.), 1998-01, Vol.61 (1), p.2-7 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A radiochemical enzyme assay for studying cyclooxygenase (COX)-catalyzed prostaglandin biosynthesis in vitro was optimized with respect to both COX-1 and COX-2 activity. The assay can be used to assess the relative selectivity of plant-derived inhibitors on COX-1 and COX-2. Assay conditions were optimized for both enzymes with respect to concentration of cofactors (l-epinephrine, reduced glutathione, and hematin), activation time (enzyme and cofactors), reaction time, and pH. Moreover, the kinetic parameters, K m and K cat., of both enzymes were estimated. Five COX inhibitors were used to validate the assay, indomethacin, aspirin, naproxen, ibuprofen, and the arylsulfonamide NS-398, all with different COX selectivity and time dependency. Time-dependent inhibition was determined by comparing the inhibition, with and without preincubation of enzyme and inhibitor. Two flavonoids, (+)-catechin and quercitrin, were examined with respect to inhibition of COX-catalyzed prostaglandin biosynthesis. (+)-Catechin showed equal inhibitory effects on the two enzymes. Quercitrin was found to be inactive toward both COX-1- and COX-2-catalyzed prostaglandin biosynthesis. The optimization procedure resulted in a considerable reduction of the amount of enzyme required for adequate prostglandin biosynthesis and a reliable method suited to evaluate natural products on inhibition of COX-2-catalyzed prostaglandin biosynthesis, as well as on COX-1. |
---|---|
ISSN: | 0163-3864 1520-6025 1520-6025 |
DOI: | 10.1021/np970343j |