The Characteristic Dimension of Four-Dimensional $${\mathcal {N}}$$ = 2 SCFTs

In this paper we introduce the characteristic dimension of a four dimensional $${{\mathcal {N}}}=2$$ N = 2 superconformal field theory, which is an extraordinary simple invariant determined by the scaling dimensions of its Coulomb branch operators. We prove that only nine values of the characteristi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2023-05, Vol.400 (1), p.519-540
Hauptverfasser: Cecotti, Sergio, Zotto, Michele Del, Martone, Mario, Moscrop, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we introduce the characteristic dimension of a four dimensional $${{\mathcal {N}}}=2$$ N = 2 superconformal field theory, which is an extraordinary simple invariant determined by the scaling dimensions of its Coulomb branch operators. We prove that only nine values of the characteristic dimension are allowed, $$-\infty $$ - ∞ , 1 ,6/5, 4/3, 3/2, 2, 3, 4, and 6, thus giving a new organizing principle to the vast landscape of 4d $${\mathcal {N}}=2$$ N = 2 SCFTs. Whenever the characteristic dimension differs from 1 or 2, only very constrained special Kähler geometries (i.e. isotrivial, diagonal and rigid) are compatible with the corresponding set of Coulomb branch dimensions and extremely special, maximally strongly coupled, BPS spectra are allowed for the theories which realize them. Our discussion applies to superconformal field theories of arbitrary rank, i.e. with Coulomb branches of any complex dimension. Along the way, we predict the existence of new $${{\mathcal {N}}}=3$$ N = 3 theories of rank two with non-trivial one-form symmetries.
ISSN:0010-3616
1432-0916
1432-0916
DOI:10.1007/s00220-022-04605-5