Typicality of the 2021 Western North America summer heatwave

Elucidating the statistical properties of extreme meteo-climatic events and capturing the physical processes responsible for their occurrence are key steps for improving our understanding of climate variability and climate change and for better evaluating the associated hazards. It has recently beco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research letters 2023-01, Vol.18 (1), p.15004
Hauptverfasser: Lucarini, Valerio, Melinda Galfi, Vera, Riboldi, Jacopo, Messori, Gabriele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Elucidating the statistical properties of extreme meteo-climatic events and capturing the physical processes responsible for their occurrence are key steps for improving our understanding of climate variability and climate change and for better evaluating the associated hazards. It has recently become apparent that large deviation theory (LDT) is very useful for investigating persistent extreme events, and specifically, for flexibly estimating long return periods and for introducing a notion of dynamical typicality. Using a methodological framework based on LDT and taking advantage of long simulations by a state-of-the-art Earth system model, we investigate the 2021 Western North America summer heatwave. Indeed, our analysis shows that the 2021 event can be seen as an unlikely but possible manifestation of climate variability, whilst its probability of occurrence is greatly amplified by the ongoing climate change. We also clarify the properties of spatial coherence of the 2021 heatwave and elucidate the role played by the Rocky Mountains in modulating hot, dry, and persistent extreme events in the Western Pacific region of North America.
ISSN:1748-9326
1748-9326
DOI:10.1088/1748-9326/acab77