Recursive identification of a nonlinear state space model
Summary The convergence of a recursive prediction error method is analyzed. The algorithm identifies a nonlinear continuous time state space model, parameterized by one right‐hand side component of the differential equation and an output equation with a fixed differential gain, to avoid over‐paramet...
Gespeichert in:
Veröffentlicht in: | International journal of adaptive control and signal processing 2023-02, Vol.37 (2), p.447-473 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
The convergence of a recursive prediction error method is analyzed. The algorithm identifies a nonlinear continuous time state space model, parameterized by one right‐hand side component of the differential equation and an output equation with a fixed differential gain, to avoid over‐parametrization. The method minimizes the criterion by simulation using an Euler discretization. A stability analysis of the associated differential equations results in conditions for (local) convergence to a minimum of the criterion function. Simulations verify the theoretical analysis and illustrate the performance in the presence of unmodeled dynamics, by identification of the nonlinear drum boiler dynamics of a power plant model. |
---|---|
ISSN: | 0890-6327 1099-1115 1099-1115 |
DOI: | 10.1002/acs.3531 |