Recursive identification of a nonlinear state space model

Summary The convergence of a recursive prediction error method is analyzed. The algorithm identifies a nonlinear continuous time state space model, parameterized by one right‐hand side component of the differential equation and an output equation with a fixed differential gain, to avoid over‐paramet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of adaptive control and signal processing 2023-02, Vol.37 (2), p.447-473
1. Verfasser: Wigren, Torbjörn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary The convergence of a recursive prediction error method is analyzed. The algorithm identifies a nonlinear continuous time state space model, parameterized by one right‐hand side component of the differential equation and an output equation with a fixed differential gain, to avoid over‐parametrization. The method minimizes the criterion by simulation using an Euler discretization. A stability analysis of the associated differential equations results in conditions for (local) convergence to a minimum of the criterion function. Simulations verify the theoretical analysis and illustrate the performance in the presence of unmodeled dynamics, by identification of the nonlinear drum boiler dynamics of a power plant model.
ISSN:0890-6327
1099-1115
1099-1115
DOI:10.1002/acs.3531