Time evolution of magnetic activity cycles in young suns: The curious case of κ Ceti

Context. A detailed investigation of the magnetic properties of young Sun-like stars can provide valuable information on our Sun’s magnetic past and its impact on the early Earth. Aims. We determine the properties of the moderately rotating young Sun-like star κ Ceti’s magnetic and activity cycles u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2022-02, Vol.658, p.A16
Hauptverfasser: Boro Saikia, S., Lüftinger, T., Folsom, C. P., Antonova, A., Alecian, E., Donati, J.-F., Guedel, M., Hall, J. C., Jeffers, S. V., Kochukhov, O., Marsden, S. C., Metodieva, Y. T., Mittag, M., Morin, J., Perdelwitz, V., Petit, P., Schmid, M., Vidotto, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Context. A detailed investigation of the magnetic properties of young Sun-like stars can provide valuable information on our Sun’s magnetic past and its impact on the early Earth. Aims. We determine the properties of the moderately rotating young Sun-like star κ Ceti’s magnetic and activity cycles using 50 yr of chromospheric activity data and six epochs of spectropolarimetric observations. Methods. The chromospheric activity was determined by measuring the flux in the Ca  II H and K lines. A generalised Lomb–Scargle periodogram and a wavelet decomposition were used on the chromospheric activity data to establish the associated periodicities. The vector magnetic field of the star was reconstructed using the technique of Zeeman Doppler imaging on the spectropolarimetric observations. Results. Our period analysis algorithms detect a 3.1 yr chromospheric cycle in addition to the star’s well-known ~6 yr cycle period. Although the two cycle periods have an approximate 1:2 ratio, they exhibit an unusual temporal evolution. Additionally, the spectropolarimetric data analysis shows polarity reversals of the star’s large-scale magnetic field, suggesting a ~10 yr magnetic or Hale cycle. Conclusions. The unusual evolution of the star’s chromospheric cycles and their lack of a direct correlation with the magnetic cycle establishes κ Ceti as a curious young Sun. Such complex evolution of magnetic activity could be synonymous with moderately active young Suns, which is an evolutionary path that our own Sun could have taken.
ISSN:0004-6361
1432-0746
1432-0746
1432-0756
DOI:10.1051/0004-6361/202141525