Stability analysis of high order methods for the wave equation

In this paper, we investigate the stability of a numerical method for solving the wave equation. The method uses explicit leap-frog in time and high order continuous and discontinuous (DG) finite elements using the standard Lagrange and Hermite basis functions in space. Matrix eigenvalue analysis is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2022-04, Vol.404, p.113900, Article 113900
Hauptverfasser: Weber, Ivy, Kreiss, Gunilla, Nazarov, Murtazo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate the stability of a numerical method for solving the wave equation. The method uses explicit leap-frog in time and high order continuous and discontinuous (DG) finite elements using the standard Lagrange and Hermite basis functions in space. Matrix eigenvalue analysis is used to calculate time-step restrictions. We show that the time-step restriction for continuous Lagrange elements is independent of the nodal distribution, such as equidistributed Lagrange nodes and Gauss–Lobatto nodes. We show that the time-step restriction for the symmetric interior penalty DG schemes with the usual penalty terms is tighter than for continuous Lagrange finite elements. Finally, we conclude that the best time-step restriction is obtained for continuous Hermite finite elements up to polynomial degrees p=13.
ISSN:0377-0427
1879-1778
1879-1778
DOI:10.1016/j.cam.2021.113900