Stability analysis of high order methods for the wave equation
In this paper, we investigate the stability of a numerical method for solving the wave equation. The method uses explicit leap-frog in time and high order continuous and discontinuous (DG) finite elements using the standard Lagrange and Hermite basis functions in space. Matrix eigenvalue analysis is...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2022-04, Vol.404, p.113900, Article 113900 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate the stability of a numerical method for solving the wave equation. The method uses explicit leap-frog in time and high order continuous and discontinuous (DG) finite elements using the standard Lagrange and Hermite basis functions in space. Matrix eigenvalue analysis is used to calculate time-step restrictions. We show that the time-step restriction for continuous Lagrange elements is independent of the nodal distribution, such as equidistributed Lagrange nodes and Gauss–Lobatto nodes. We show that the time-step restriction for the symmetric interior penalty DG schemes with the usual penalty terms is tighter than for continuous Lagrange finite elements. Finally, we conclude that the best time-step restriction is obtained for continuous Hermite finite elements up to polynomial degrees p=13. |
---|---|
ISSN: | 0377-0427 1879-1778 1879-1778 |
DOI: | 10.1016/j.cam.2021.113900 |