Conserved and context-dependent roles for pdgfrb signaling during zebrafish vascular mural cell development
Platelet derived growth factor beta and its receptor, Pdgfrb, play essential roles in the development of vascular mural cells, including pericytes and vascular smooth muscle cells. To determine if this role was conserved in zebrafish, we analyzed pdgfb and pdgfrb mutant lines. Similar to mouse, pdgf...
Gespeichert in:
Veröffentlicht in: | Developmental biology 2021-11, Vol.479, p.11-22 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Platelet derived growth factor beta and its receptor, Pdgfrb, play essential roles in the development of vascular mural cells, including pericytes and vascular smooth muscle cells. To determine if this role was conserved in zebrafish, we analyzed pdgfb and pdgfrb mutant lines. Similar to mouse, pdgfb and pdgfrb mutant zebrafish lack brain pericytes and exhibit anatomically selective loss of vascular smooth muscle coverage. Despite these defects, pdgfrb mutant zebrafish did not otherwise exhibit circulatory defects at larval stages. However, beginning at juvenile stages, we observed severe cranial hemorrhage and vessel dilation associated with loss of pericytes and vascular smooth muscle cells in pdgfrb mutants. Similar to mouse, pdgfrb mutant zebrafish also displayed structural defects in the glomerulus, but normal development of hepatic stellate cells. We also noted defective mural cell investment on coronary vessels with concomitant defects in their development. Together, our studies support a conserved requirement for Pdgfrb signaling in mural cells. In addition, these zebrafish mutants provide an important model for definitive investigation of mural cells during early embryonic stages without confounding secondary effects from circulatory defects.
[Display omitted] |
---|---|
ISSN: | 0012-1606 1095-564X 1095-564X |
DOI: | 10.1016/j.ydbio.2021.06.010 |