On the number of principal ideals in d-tonal partition monoids

For a positive integer d , a non-negative integer n and a non-negative integer h ≤ n , we study the number C n ( d ) of principal ideals; and the number C n , h ( d ) of principal ideals generated by an element of rank h , in the d -tonal partition monoid on n elements. We compute closed forms for t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of combinatorics 2021-03, Vol.25 (1), p.79-113
Hauptverfasser: Ahmed, Chwas, Martin, Paul, Mazorchuk, Volodymyr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a positive integer d , a non-negative integer n and a non-negative integer h ≤ n , we study the number C n ( d ) of principal ideals; and the number C n , h ( d ) of principal ideals generated by an element of rank h , in the d -tonal partition monoid on n elements. We compute closed forms for the first family, as partial cumulative sums of known sequences. The second gives an infinite family of new integral sequences. We discuss their connections to certain integral lattices as well as to combinatorics of partitions.
ISSN:0218-0006
0219-3094
0219-3094
DOI:10.1007/s00026-020-00518-z